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Abstract—Sensor fault diagnosis is crucial for the safe and
reliable monitoring of natural gas pipelines. Even though model-
based techniques have remarkable performance, they still face
significant challenges such as non-linearity and external dis-
turbances. In contrast, data-driven methods struggle to deal
with unknown disturbances and uncertainties. To address these
challenges, this paper proposes a hybrid fault diagnostic scheme
that leverages the benefits of both model-based and data-driven
techniques. First, it introduces a model-based fault estimation
technique based on a partial-distributed ensemble Kalman filter
(EnKF). It reduces the computational complexity by separating
the non-linear computation from the distributed architecture.
Furthermore, a data-driven method is developed to detect and
isolate sensor faults based on the Gaussian mixture model
(GMM). Experimental results considering different sensor fault
conditions confirm the effectiveness of the proposed method.

Index Terms—Hybrid, model-based, data-driven, fault detec-
tion and isolation, ensemble Kalman filter, Gaussian mixture
model, natural gas pipeline.

I. INTRODUCTION

Sensor-based monitoring is crucial for ensuring system
safety and reducing the risk of catastrophic failures in natural
gas pipelines [1], [2]. However, sensors are susceptible to
several errors and faults, making sensor-fault detection, iso-
lation and accommodation (SFDIA) vital for efficient pipeline
operation. SFDIA methods are generally classified into model-
based methods [3], [4] and data-driven methods [5], [6]. The
model-based techniques are effective for fault diagnosis when
the system model is well-defined. However, their performance
is compromised by factors like model non-linearity, external
disturbances, and high dimensionality. Conversely, the data-
driven methods rely on input-output mapping but face chal-
lenges with unknown disturbances and uncertainties. There-
fore, combining model-based and data-driven methods can
mitigate potential disturbances and enable fast and accurate
fault detection [7].

Based on these insights, this paper presents a novel hybrid
approach that integrates model-based and data-driven methods
for sensor fault diagnosis in natural gas pipelines. A partially
distributed ensemble Kalman filter (EnKF) is proposed to
reduce computational complexity by separating the nonlinear
computations from the local filters and delegating them to
the main filter. The main filter handles time updates and
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information fusion, while the local filters manage measure-
ment updates, reducing computational load. Further, a fault
diagnosis approach based on the Gaussian mixture model
(GMM) is developed to improve the estimation performance
in the presence of sensor faults. GMMs capture complex data
patterns and identify significant anomalies by incorporating
features from the partially distributed architecture [8]. This in-
tegration significantly enhances the fault diagnosis capabilities,
outperforming purely model-based or data-driven approaches.

The rest of the paper is organized as follows: Section
II explains the system model; the proposed technique is
developed in Section III; Section IV illustrates the simulation
results, and conclusions are given in Section V.

II. SYSTEM MODEL

Natural gas pipelines under transient flow can be mathe-
matically represented by a set of hyperbolic partial differential
equations (PDEs) as

∂x

∂t
= −A(x)

∂x

∂s
− ζ(x) , (1)

where s ∈ [0, L], t ∈ [0, tf ] denote the space and the time with
L, tf as the pipeline length and the time span, respectively [9],
and the state vector x = [p, ṁ, T ]T comprises of pressure (p),
flow (ṁ), and temperature (T ). The coefficient matrix A(x) ∈
R3×3 and the vector ζ(x) ∈ R3×1 which represent the non-
linear thermodynamic transformations are given in [9].

Further, the numerical method of lines (5-point, 4th-order
finite difference method) is used to convert the system of PDEs
in (1) into ordinary differential equations (ODEs) as

dx(t)

dt
= A(x)Dx(t)− ζ(x, t) , (2)

where ζ(x, t) ∈ R3n×1, A(x) ∈ R3n×3n represent the
assembled vector and matrix, respectively. The state vector
x becomes x(t) = [p1(t), . . . , pn(t), ṁ1(t), . . . , ṁn(t), T1(t),
. . . , Tn(t)]

T ∈ R3n×1 and the computational matrix D for
spatial discretization is presented in [9]. The resulting ODEs
are further solved using the 4th-order Runge-Kutta method to
obtain the state-space model [4], which is subsequently used
for sensor fault diagnosis in natural gas pipelines.

III. PROPOSED DESIGN

Fig. 1 illustrates all the steps involved in the proposed
design: (1) the sensor measurements are initially grouped
into several subgroups; (2) state estimation begins with the
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Fig. 1: Proposed architecture

non-linear time update in the main filter; (3) the local filters
perform the linear measurement updates; (4) the fault detection
mechanism based on the GMM is used to analyze the local
state variance; (5) faulty state estimates are corrected with
the non-faulty estimates; (6) the global estimates are finally
computed in the information mixture.

Within the partial-distributed framework, the state space
model for the main and the ith local filter can be given as

xk = f(xk−1,uk−1) +wk ,

yi,k = hi(xk,uk) + vi,k , (3)

where f(·, ·) : Rnx × Rnu → Rnx represents the nonlinear
flow model. At the kth time step, the measurement vector
for the ith local filter (where i = 1, 2, . . . , N ) and the state
vector are denoted by yi,k ∈ Rny×1 and xk ∈ Rnx×1, re-
spectively. The input vector uk−1 ∈ Rnu×1, given by uk−1 =
[uT

inu
T
bc,k−1]

T contains both initial and boundary conditions.
In our technique, we assume linear measurement model, i.e.,
hi(xk,uk) = Hixk, aiming to reduce the dimension of the
state vector based on the dimension of each subgroup of
measurements. Additionally, the process and the measurement
noises are represented by wk ∈ Rnx×1 ∼ N (0,Qk) and
vi,k ∈ Rny×1 ∼ N (0,Ri,k), respectively.

The partial-distributed filtering architecture performs the
non-linear state estimation as follows.
Step 0: Initialization. Initialize the state estimate x̂0|0 based
on the specific use case requirements. Define distinct sub-
groups of sensor measurements and the number of local filters.
Step 1: Main filter. An ensemble of samples of size Ne,{
x̂
(j)
k−1|k−1, 1 ≤ j ≤ Ne

}
, is generated to represent the dis-

tribution p(xk−1|Yk−1), where Yk−1 = {y1,y2, . . . ,yk−1}.
The samples

{
w

(j)
k , 1 ≤ j ≤ Ne} are drawn from the

Gaussian distribution N (0,Qk). Using these ensembles, the
a priori ensemble {x̂(j)

k|k−1, 1 ≤ j ≤ Ne}, is produced as

x̂
(j)
k|k−1 = f

(
x̂
(j)
k−1|k−1,u

(j)
k−1

)
+w

(j)
k . (4)

Next, the a priori state estimate and covariance ma-
trix are calculated as x̂k|k−1 = 1

Ne

∑Ne

j=1 x̂
(j)
k|k−1 and

Pk|k−1 = 1
Ne−1E

x
k|k−1

(
Ex

k|k−1

)T
, respectively, with

Ex
k|k−1 =

[(
x̂
(1)
k|k−1−x̂k|k−1

)
, . . . ,

(
x̂
(Ne)
k|k−1−x̂k|k−1

)]
. These

a priori estimates are then shared with N linear local filters.

Step 2: Local filters. The linear Kalman filters are employed
for measurement updates. The linear measurement update of
the ith local filter is performed as

Ki,k = Pk|k−1H
T
i

(
HiPk|k−1H

T
i +Ri,k

)−1

,

x̂i,k|k = x̂k|k−1 +Ki,k

(
yi,k −Hix̂k|k−1

)
,

Pi,k|k =
(
I −Ki,kHi

)
Pk|k−1. (5)

Step 3: Fault detection and isolation. The state-
variance vector ξk ∈ Rnx×1 is employed for fault
detection, whose ℓth element is defined as ξ

(ℓ)
k =

1
N

∑N
i=1

(
x̂
(ℓ)
i,k|k − 1

N

∑N
i=1

(
x̂
(ℓ)
i,k|k

))2

. This metric is effec-
tive only when a specific grouping of sensor measurements
is utilized, i.e., a unique/non-repetitive set of sensor measure-
ments is assigned to each local filter. For M sensors and N
local filters, each local filter contains M/N sensor measure-
ments, where M/N must be an integer. This grouping allows
each local filter to generate an independent state estimate
based on its assigned subset of sensor measurements [10]. A
faulty measurement only affects the estimate of its respective
local filter, while the remaining local filters generate non-faulty
estimates. Consequently, the local state variance measures the
variations in these independent local state vector estimates in
the presence of faults.

To improve the evaluation of the state variance for diagnos-
ing sensor faults, we utilize the GMM that estimates a combi-
nation of multiple Gaussian components for each element of
the local state variance. The GMM is trained offline under non-
faulty conditions using the expectation-maximization (EM)
algorithm [8]. The algorithm for the offline training of the
GMM for the ℓth entry of the error vector ξk consists of the
following steps. (1) The normalization is performed as ξ̃

(ℓ)
k =

ξ
(ℓ)
k − 1

N

∑nx

ℓ=1

(
ξ
(ℓ)
k

)
, where ξ̃

(ℓ)
k represents the ℓth entry of

the normalized vector ξ̃k ∈ Rnx×1. (2) The parameters for
the r Gaussian component, where r = 1, . . . , R, including the
mixing coefficient (π(ℓ)

r ), mean (µ(ℓ)
r ), and standard deviation

(σ(ℓ)
r ) are initialized. (3) E-Step: For each time instant k =

1, . . . , Nk (where Nk = tf/∆t is the final time instant), the re-

sponsibilities are computed as γ(ℓ)
kr =

π(ℓ)
r N (ξ̃

(ℓ)
k |µ(ℓ)

r ,σ(ℓ)
r )∑R

m=1 πmN (ξ̃
(ℓ)
k |µ(ℓ)

m ,σ
(ℓ)
m )

,

which represents the probability that the data point ξ̃
(ℓ)
k be-

longs to the rth Gaussian component. (4) M-Step: The pa-
rameters {π(ℓ)

r , µ
(ℓ)
r , σ

(ℓ)
r }Rr=1 are updated using the computed

responsibilities as π
(ℓ)
r = 1

Nk

∑Nk

k=1 γ
(ℓ)
kr , µ(ℓ)

r =
∑Nk

k=1 γ
(ℓ)
kr ξ̃

(ℓ)
k∑Nk

k=1 γ
(ℓ)
kr

and σ
(ℓ)
r =

∑Nk
k=1 γ

(ℓ)
kr (ξ̃

(ℓ)
k −µ(ℓ)

r )(ξ̃
(ℓ)
k −µ(ℓ)

r )T∑Nk
k=1 γ

(ℓ)
kr

. Further, Steps (3)
and (4) are repeated until convergence.

For online sensor fault diagnosis, the probability density
function p(ξ̃

(ℓ)
k |{π(ℓ)

r , µ
(ℓ)
r , σ

(ℓ)
r }Rr=1), obtained from GMM,

is employed. An error metric ek ∈ Rnx×1 is used for
detecting sensor faults such that its ℓth entry e

(ℓ)
k is defined

as e
(ℓ)
k =

∑R
r=1 π

(ℓ)
r

1

σ
(ℓ)
r

(
µ
(ℓ)
r − ξ̃

(ℓ)
k

)2
. The fault is detected

if the error metric e
(ℓ)
k exceeds a predefined threshold χℓ. For

fault isolation, it is crucial to determine the exact location
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of the faulty estimates. This can be achieved by examining
the components of the error metric ek. Specifically, if the
error metrics e

(ℓ)
k , e

(p)
k and e

(n)
k surpass the threshold χℓ,

χp and χn, respectively, it indicates faulty estimates corre-
sponding to the sensor locations ℓ, p, and n. Furthermore,
the locations of the faulty estimates can be determined by
the set F = {l : e

(ℓ)
k > χℓ}. Identifying faulty estimate

locations allows for their replacement with fault-free estimates
determined through spatial interpolation [10]. Assuming a
distributed spatio-temporal system with known non-faulty and
faulty estimate locations, accurate estimates can be obtained
through one-dimensional linear interpolation using neighbor-
ing non-faulty estimates across space.
Step 4: Information fusion. The final estimates are computed
as P−1

k|k =
∑N

i=1 P
−1
i,k|k, and x̂k|k = Pk|k

∑N
i=1 P

−1
i,k|kx̂i,k|k.

IV. SIMULATION RESULTS AND DISCUSSIONS

For numerical simulations, we analyze a high-pressure natu-
ral gas pipeline with sensors to measure pressure, temperature,
and flow rate, as detailed in [10]. The pressure, temperature,
and flow rate measurements yi,k are generated by adding zero-
mean additive Gaussian noise vi,k having standard deviations
0.0005 MPa, 1.5 K and 2.5 kgs−1, respectively. We consider
M = 63 sensors and N = 3 locals, with each local filter
containing 21 sensor measurements. The ensemble size is
Ne = 120 and GMM with three components (R = 3)
is employed. The covariance matrices are initialization as
P0|0 = I63, Qk = σ2

w,kI63, with σ2
w,k = 0.1σ2

v,i,k, σ2
w,k

and σ2
v,i,k being process and measurement noise variances.

The estimation performance is evaluated in terms of the
root mean square error (RMSE) as presented in Table I.
The proposed method is compared against various baselines
including model-based multi-sensor fault detection, isolation,
and accommodation (MM-SFDIA) [10], fusing unscented
Kalman filter (UKF) [3], [11] and classic UKF. Our proposed
method performs similarly to fully distributed MM-SFDIA
and fusing UKF, and exhibits higher estimation performance
than the classic filter. Next, we evaluate the effectiveness of
the proposed architecture in handling multiple simultaneous
sensor faults, including bias and drift faults, as detailed in
[10]. Fig. 2 demonstrates that the proposed technique and
MM-SFDIA successfully detect and isolate the faulty sensors,
providing reliable state estimates in the presence of faults due
to their capability to handle multiple faults. Conversely, the
fusion UKF fails to deliver reliable detection, isolation, and
estimation.

Furthermore, we evaluate the detection performance of the
proposed design using probabilities of detection and false
alarm. The receiver operating characteristic (ROC) curves for
various combinations of simultaneous weak bias and drift
faults are shown in Fig. 3. These ROC curves demonstrate that
the proposed technique achieves a high probability of detection
and a low probability of false alarm compared to MM-SFDIA.
Additionally, Fig. 4 presents the confusion matrices for the
weak bias fault scenario to assess the isolation performance
of our proposed architecture. The results demonstrate that

Method Pressure Temperature Flow Rate
(10−3MPa) (K) (kg/s)

Proposed 0.4522 0.2372 0.8274
MMSFDIA 0.535 2.5235 2.9985
Fusing UKF 0.123 0.347 0.646

UKF 0.158 0.449 0.802

TABLE I: RMSE in the presence of measurement noise.
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Fig. 2: State estimation in the presence of simultaneous faults.
Actual/faulty values in black/blue, proposed method in red,
MM-SFDIA in green, and fusing UKF in cyan.
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Fig. 3: ROC curves for the proposed technique (blue) and
MM-SFDIA (red) under weak bias and weak drift faults.
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the proposed design can accurately predict and isolate all
faulty sensors, outperforming MM-SFDIA, which lacks GMM.
Hence, the detection and isolation capabilities of the proposed
technique have improved by incorporating GMM.

V. CONCLUSIONS

The proposed design introduced a novel hybrid technique
for effective fault diagnosis in natural gas pipelines. It em-
ployed a novel partial-distributed EnKF framework, offloading
the nonlinear computations from the local filters to the main
filter, thus reducing computational complexity. Further, a new
fault detection and isolation mechanism based on GMM is
developed for handling multiple simultaneous sensor faults.
This integration enhanced the fault detection and isolation
capabilities while minimizing the computational overheads.
Simulation results demonstrated that the proposed technique
outperformed the popular benchmarks. Future work will focus
on developing hybrid techniques for detecting simultaneous
process-related (compressor) and sensor faults.
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